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Abstract. Using the path integral method, we calculate the partition function and the generating functional
(of the field strengths) on nonlocal generalized 2D Yang–Mills theories (nlgYM2’s), which are nonlocal in
the auxiliary field. This has been considered before by Saaidi and Khorrami. Our calculations are done for
general surfaces. We find a general expression for the free energy of W (φ) = φ2k in nlgYM2 theories at the
strong coupling phase (SCP) regime (A > Ac) for large groups. In the specific φ4 model, we show that the
theory has a third order phase transition.

1 Introduction

This paper will be devoted to a renewed study of two-
dimensional Yang–Mills theory without matter, a system
which can easily be solved. Yet we will see that there is
still much to say about this system. Pure two-dimensional
Yang–Mills theories (YM2’s) have certain properties, such
as invariance under an area preserving diffeomorphism
and lack of any propagating degrees of freedom [6]. There
are, however, ways to generalize these theories without los-
ing those properties. One way, leading to what are called
generalized Yang–Mills theories (gYM2’s) [2], is to write

iTr(BεµνFµν) + f(B). (1)

Here Fµν is the Yang–Mills field strength and B is a scalar
field in the adjoint representation of the gauge group.
Standard dimensional analysis applied to (1) shows that
Fµν has dimension 2 and B dimension 0, so power count-
ing allows an arbitrary class function f (B). In this model,
produced by Witten [2], and one obtains the partition
function by considering its action as a perturbation of
the topological theory at zero area. In [3–5] the Green
function, partition function and expectation values of Wil-
son loops were calculated. One can, however, use standard
path integration and calculate the observables of the the-
ory [6,12]. To study the behavior of these theories for large
groups is also interesting. This was done in [8–11] for or-
dinary YM2 theories and in [12,13] for gYM2 theories. It
was shown that YM2’s and some classes of gYM2’s have
a third order phase transition in a certain area. There is
another way to generalize YM2 and gYM2, and that is
to use a nonlocal action for the auxiliary field, leading to
the so-called nonlocal YM2 (nlYM2’s) and nonlocal gYM2
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(nlgYM2’s) theories, respectively [14]. The authors of [14]
studied nlYM2 and investigated the order of the transi-
tion for that case. We want to study the wave function,
partition function, generating functional of nlgYM2 and
also their properties for a large gauge group in the state
in which W (φ) = φ4. The scheme of the present paper is
the following.

In Sect. 2, the wave function and partition function
of nlgYM2 on general surfaces are computed. In Sect. 3,
the generating functional of nlgYM2 on a disk and on
general surfaces are calculated. In Sect. 4, the properties
of nlgYM2 large groups, for the case in which f(B) =
Tr(B2k), are studied. Finally in Sect. 5, we test our theory
for the φ4 model (f(B) = Tr(B4)). It is shown that the
large group properties of nlgYM2 are the same as was
found for ordinary gYM2.

2 The wave function of nlgYM2

The nlgYM2 is defined by [14]

eS :=
∫
DB exp

{
i
∫

Tr(BF )dµ+ ω

[∫
f(B)dµ

]}
,

(2)
where dµ is the invariant measure of the surface

dµ :=
1
2
εµνdxµdxν . (3)

F is the field strength corresponding to the gauge field
and B is a pseudo-scalar field in the adjoint representa-
tion of the group. Along the line of [12,14], we begin by
calculating the wave function on a disk. We obtain

ψD(U) =
∫
DF eSδ

(
P exp

∮
∂D

A,U

)
. (4)
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Here U is the class of the Wilson loop corresponding to
the boundary. The delta function is also a class delta func-
tion; its support agrees with the boundary conditions.
This delta function can be expanded in terms of the char-
acters of irreducible unitary representations of the group;
i.e.

δ

(
P exp

∮
∂D

A,U

)
=
∑
R

χR(U−1)χR

(
P exp

∮
∂D

A

)
.

(5)
We introduce fermionic variables η and η̄ in the represen-
tation R to write the Wilson loop as [6,12]

χR

(
P exp

∮
∂D

A

)
=
∫
DηDη̄ exp

{∫ 1

0
dtη̄(t)η̇(t)

+
∮

∂D

η̄Aη

}
ηα(0)η̄α(1). (6)

Inserting (6) in (5) and then (4), using the Schwinger–
Fock gauge, and integrating over F , B, and the fermionic
variables, respectively, one obtains

ψD(U) =
∑
R

χR(U−1)dR exp {ω[ACf (R)]}; (7)

here dR is the dimension of the representation R and

Cf (R)1R =: f(−iTR). (8)

f(−iTR) means that one has put −iT a in the representa-
tion R instead of Ba in the function f . The action of the
original B–F theory (2) is not extensive; i.e.

SA1+A2(B,F ) �= SA1(B,F ) + SA2(B,F ). (9)

Therefore, one cannot simply glue the disk wave function
to obtain the wave function corresponding to a larger disk.
To obtain the wave function for an arbitrary surface, how-
ever, one can begin with a disk of the same area and im-
pose boundary conditions on certain parts of the boundary
of the disk. These conditions correspond to the identifica-
tions needed for constructing the desired surface from a
disk. The only things to be calculated are integrations
over the group of characters of the same representation
[5]. This is easily done and one arrives at

ψ∑
g,q

(U1, . . . , Un) =
∑
R

hq
Rd

2−2g−q−n
R (10)

×χR(U−1
n ) . . . χR(U−1

n ) exp
{
ω
[
−Cf (R)A∑

g,q

]}
,

where
∑

g,q is a surface containing g handles, n boundaries
and q projective planes. hR is defined as

hR :=
∫

dUχR(U2); (11)

hR = 0 unless the representation R is self-conjugate. In
this case, this representation has an invariant bilinear
form. Then, hR = 1 if this form is symmetric and hR = −1
if it is antisymmetric [15].

The partition function of the theory on a sphere is
obtained if we put the Ui’s equal to unity and g and q
equal to zero. We obtain

Zs2 =
∑
R

d2
R exp {ω[−ACf (R)]}. (12)

3 The generating functional Z[J ] of nlgYM2

To calculate the Green functions of the F a’s, we again
begin with the disk and calculate the wave function of
nlgYM2 on the disk, with a source term coupled to F ; i.e.

ψD[J ] =
∫
DF e{S+

∫
Tr(FJ)dµ}δ

(
P exp

∮
∂D

A,U

)
.

(13)
Following the same steps as in the previous section, we
arrive at

ψD[J ] =
∑
R

χR(U−1) (14)

× TrR

{
P exp

(
ω

[∫
f(iJa(x) + iT a)dµ

])}
.

In the above equation P stands for ordering according to
the angle variable on the disk. To obtain the generating
functional Z[J ] of nlgYM2 for an arbitrary surface,

∑
g,q,

we can use the same procedure as was used in obtaining
(11) and the result is

Z∑
g,q

[J ] =
∑
R

hq
Rd

2−2g−q−1
R exp {ω[ACf (R)]} (15)

× TrR

{
P exp

(
ω

[∫
f(iJa + iT a)dµ

])}
.

As an example, consider YM2, in which ω
[∫

f(B)dµ
]
=

−1/2ε
∫
Tr(B2)dµ. In this case (15) reduces to

Z∑
g,q

[J ] = Z1[J ]
∑
R

hq
Rd

2−2g−q−1
R

× exp
{

− ε

2
C2(R)A∑

g,q

}
× TrR

{
P exp

(
ε

∫
dt
∫

ds
√
gJ(t, s)

)}
,(16)

where

Z1[J ] = exp
(

− ε

2

∫
JaJadµ

)
.

This is in agreement with the result obtained in [12]. Func-
tional differentiating of (15) with respect to J(x) gives us
the n-point functions of the F ’s in the Schwinger–Fock
gauge.

4 Large N limit of nlgYM2

Starting from (12), consider the case that the gauge group
is U(N). The representations of this group are labeled by
N integers ni satisfying

ni ≥ nj , i ≤ j. (17)
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The dimension of this representation is

dR =
∏

1≤i≤j≤N

(
1 +

ni − nj

j − i

)
, (18)

and the kth Casimir operator is

Ck(R) =
N∑

i=1

[(ni +N − i)k − (N − i)k]. (19)

Taking for Cf (R) a linear function of the Casimir oper-
ators (19), redefining the function ω and introducing an-
other function by

−N2V

[
A

N∑
k=1

akĈk(R)

]
:= ω[−ACf (R)], (20)

where

Ĉk(R) =
1

Nk+1

N∑
i=1

(ni +N − i)k, (21)

then, following [10], we can use the definitions

x :=
i

N
, (22)

and
φ(x) =

i− ni −N

N
. (23)

So apart from an unimportant constant, the partition
function takes the form

Z[φ(x)] =
∫
Dφ(x)e{−N2S(φ)}, (24)

where

S(φ) = V

(
A

∫ 1

0
W [φ(x)]dx

)

+
∫ 1

0
dx
∫ 1

0
dy log |φ(x) − φ(y)|, (25)

and
W (φ) :=

∑
k=1

(−1)kakφ
k. (26)

In the large N limit, only the configuration of φ con-
tributes to the partition function that minimizes S. To
find it, we put the variation of S with respect to φ equal
to zero. Then

Â

2
W ′(φ) = P

∫ 1

0

dt
φ(x) − φ(x)

, (27)

where

Â := AV ′
[
A

∫ 1

0
dxW (φ(x))

]
. (28)

One defines a density function for φ BY

u(φ) :=
dx(φ)
dφ

∣∣∣∣
φ=z

, (29)

which should be positive and normalized to∫ a

−a

u(z)dz = 1. (30)

Then (27) becomes

Â

2
W ′(z) = P

∫ a

−a

u(t)dt
z − t

. (31)

To solve (31), we defined the functionH(z) on the complex
z-plane [10]

H(z) :=
∫ a

−a

u(t)dt
z − t

. (32)

This function is analytic on the complex plane, except for
a cut at [−a, a]. With proceed by the same procedure as
was followed in [12], and we arrive at

H(z) =
Â

2
W ′(z) −

√
z2 − a2

×
∞∑

m,n=0

Mn
a2nzm

(2n+m+ 1)!
g(2n+m+1)(0), (33)

where

g(z) =
Â

2
W ′(z), (34)

and

Mn =
(2n− 1)!!

2nn!
, M0 = 1. (35)

g(k) is the kth derivative of g with respect to z. From (32),
it is seen that

ImH(z + iε) = −πu(z), x ∈ [−a, a], (36)

which gives

u(z) =
√
a2 − z2

π

∞∑
n,m=0

Mna
2nzmg(2n+m+1)(0)
(2n+m+ 1)!

. (37)

To obtain a, one can use (30) and (37), which yields
∞∑

n=0

Mna
2ng(2n−1)(0)
(2n− 1)!

= 1. (38)

Defining a free energy function by

F := − 1
N2S|φcla.

, (39)

it is seen that
F ′(A) = V ′(Aκ)κ, (40)

where

κ =
∫ 1

0
W [φ(x)]dx =

∫ a

−a

u(z)W (z)dz. (41)

By making use of (37) and the explicit expression forW (z)
as a function of z, we can calculate κ and therefore at last
we can compute F ′

w(A) (40) for this model. Note that the
above solution is valid in the weak (A ≤ Ac) regime, where
Ac is the critical area. If A > Ac, then the constraint u ≤ 1
is violated.
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5 The W (z) = z2k model for nlgYM2

5.1 WCP regime (A ≤ Ac)

In order to study the behavior of any model in the SCP
regime (A > Ac), we need to know the explicit form of
the density function in the weak regime, uw(z). So by
rewriting (37), (38) and (40) for the z2k model, one arrives
at

uw(z) =
kÂ

π

√
a2 − z2

k−1∑
n=0

Mna
2nz2k−2n−2, (42)

kÂa2k

2k
Q(k) = 1, (43)

F ′
w(A) =

kV ′Âa4k

2k
E(k), (44)

where

Q(k) =
k−1∑
n=0

(2k − 2n− 3)!!(2n− 1)!!
(k − n− 1)!(n+ 1)!

,

E(k) =
k−1∑
n=0

(2k − 2n− 3)!!(2k + 2n− 1)!!
(k − n− 1)!(k + n+ 1)!

. (45)

This is, of course, in complete accordance with [13]. But
one must now obtain the quantities in terms of A, not Â.
It is seen that

F ′
w(A) =

E(k)
kAQ2(k)

=
1

2kA
. (46)

The function V has disappeared from F ′
w(A), as can be

seen by the rescaling φ̂ := A1/(2k)φ.
This completes our discussion of the weak-region

nlgYM2. As A increases, a situation is encountered where
uw exceeds 1. This density function is, however, not ac-
ceptable, as it violates the condition (17).

5.2 SCP regime (A > Ac)

One of the interesting points of the Z2k(k > 1) model is
the fact that the density function in the weak region, (42),
has only one minimum at z = 0, and two maxima which
are symmetric with respect to the origin [13]. So, to find
the density function in the strong region will be relevant
for the three cut Cauchy problem. Hence following [12],
we use the following ansatz for us

us(z) =

{
ûs(z), z ∈ L := [−a,−b] ∪ [−c, c] ∪ [b, a],
1, z ∈ L′ := [−b,−c] ∪ [c, b].

(47)

Using methods exactly the same as those used in [12], one
must solve

Â

2
W ′(z) = P

∫ a

−a

us(t)dt
z − t

, z ∈ L, (48)

and ∫ b

c

{
Â

2
W ′(z) − P

∫ a

−a

us(t)dt
z − t

}
dz = 0. (49)

To do so, one defines a function Hs by

Hs(z) =
∫ a

−a

us(t)dt
z − t

, (50)

which is found to be

Hs(z) = kÂz2k−1 + 2T (z)


k Â

2

′∑
[ni]=0

τ(n1, n2, n3)z2n4

−
∫ b

c

tdt
(z2 − t2)T (t)

]
, (51)

where the prime on
∑

indicates the following condition:

4∑
i=1

ni = k − 2, (52)

and

T (z) =
√

(a2 − z2)(b2 − z2)(c2 − z2), (53)
τ(n1, n2, n3) = Mn1Mn2Mn3a

2n1b2n2c2n3 . (54)

Using the fact that Hs(z)/T (z) should behave as 1/z4 for
large z, one obtains

kÂ
′∑

[ni]=0

τ(n1, n2, n3) = 2
∫ b

c

tdt
T (t)

, (55)

kÂ

′∑
[ni]=0

τ(n1, n2, n3) = 1 + 2
∫ b

c

t3dt
T (t)

. (56)

Here the prime over the summations in (55) and (56) in-
dicates the following conditions, respectively:

3∑
i=1

ni = k − 1, (57)

3∑
i=1

ni = k. (58)

In order to obtain the parameters a, b and c in spite of (55)
and (56) we need another equation (50) which is found by
expressing the action in terms of us(z) and minimizing
this along with (30) as a constraint [11,12]. By expanding
(50) and (51) at large z and comparing them, one can
easily arrives at

F ′
s(A) = V ′

s (Aκs)


kÂ

′∑
[ni]=0

τ(n1, n2, n3)τ1(n4, n5, n6)

+ 2
′∑

[ni]=0

τ1(n1, n2, n3)
∫ b

c

t2n4+1dt
T (t)


 , (59)
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where the prime over the first and second summation in-
dicates the following constraints, respectively:

6∑
i=1

ni = 2k, (60)

4∑
i=1

ni = k + 1, (61)

and

τ1(n1, n2, n3) =
a2n1b2n2c2n3

2n1+n2+n3

3∏
i=1

(2ni − 3)!!
ni!

, (62)

where we define (−3)!! = −1.
Equation (59) is an explicit relation for F ′

s(A), which
represents the SCP regime of our theory. It is seen that
the structure of F ′

s(A) is very complicated; therefore, as
an example, we study the order of the transition for the
z4 model (k = 2).

6 The z4 model of nlgYM2

6.1 WCP regime (A ≤ Ac)

In the previous section we studied the nlgYM2 for the z2k

model. In this section we can check the result for the z4

model. By rewriting (42)–(45), we have

uw(z) =
Â

π

√
a2 − z2(a2 + 2z2), (63)

κw =
3a4

16
, (64)

Â =
4

3a4 , (65)

and
F ′

w(A) =
1
4A

. (66)

It is seen that the density function in the WCP regime,
uw(z), has a minimum at z = 0, and two maxima at z1,2 =
±a/21/2. Equations (63)–(66) are valid in the regime in
which a ≤ ac = 8/(3(21/2)π) or A ≤ Ac. The value of Ac
is obtained from

uw(z1,2) = 1, (67)

which gives

AcV
′
c

(
32Ac

27π4

)
=

27π4

256
. (68)

In spite of some constant, these almost are the same results
as have been calculated for the local gYM2 theory [12].

6.2 SCP regime (A > Ac)

The z4(z) model for nlgYM2 is a state in which the density
function in WCP has a minimum at the origin and two

maxima which are symmetric with respect to the origin.
So one can use the results of the previous section to arrive
at ∫ b

c

{
2Âz3 − P

∫ a

−a

us(t)dt
z − t

}
dz = 0, (69)

Â(a2 + b2 + c2) = 2
∫ b

c

tdt
T (t)

, (70)

Â

{
(a2b2 + a2c2 + b2c2) +

3
2
(a4 + b4 + c4)

}

= 2 + 4
∫ b

c

t3dt
T (t)

. (71)

Finally, by making use of (54), (59) and (62), it is seen
that

F ′
s(A) = V ′(Aκs)

{
Â

16

[
5
4
(a8 + b8 + c8)

− 1
2
(a4b4 + a4c4 + b4c4)

+ (a2b2c4 + a2c2b4 + a4b2c2)
− (a2b6 + a2c6 + b2a6 + b2c6 + c2a6 + c2b6)

]
+

1
8
[a6 + b6 + c6

− (a2b4 + a2c4 + b2a4 + b2c4 + c2a4 + c2b4)

+ 2a2b2c2]
∫ b

c

tdt
T (t)

+
1
4
[a4 + b4 + c4

− 2(a2b2 + a2c2 + b2c2)]
∫ b

c

t3dt
T (t)

+ (a2 + b2 + c2)
∫ b

c

t5dt
T (t)

− 2
∫ b

c

t7dt
T (t)

}
. (72)

By using the same procedure as used in [12,13] and ex-
panding (69)–(72) near the critical point and then solve
them together, we obtain

F ′
s(A) =

V ′
s

Â

[
1
4
+

β

27
α2 + . . .

]
, (73)

or
F ′

s(A) − F ′
w(A) =

β

27Ac
α2 + . . . , (74)

where

α =
(
A−Ac

Ac

)2

, (75)

and

β =
(
1 +

AcκcsV
′′
cs

V ′
cs

)2

. (76)

It is seen that the theory for the φ4 model has a third or-
der phase transition, which is in agreement with ordinary
gYM2.
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